Sinc Numerical Methods for Time Nonlocal Parabolic Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution for Parabolic Equation with Nonlocal Conditions

In this paper, we study a parabolic equation with purely nonlocal (integral) conditions. We present a numerical approximate solution by Laplace transform method. Some experimental numerical results using the proposed numerical procedure are discussed.

متن کامل

Numerical Analysis for a Nonlocal Parabolic Problem

Abstract. This article is devoted to the study of the finite element approximation for a nonlocal nonlinear parabolic problem. Using a linearised Crank-Nicolson Galerkin finite element method for a nonlinear reaction-diffusion equation, we establish the convergence and error bound for the fully discrete scheme. Moreover, important results on exponential decay and vanishing of the solutions in f...

متن کامل

Summary of Sinc Numerical Methods

Contents Abstract Sinc approximation methods excel for problems whose solutions may have singularities, or innnite domains, or boundary layers. This article summarizes results obtained to date, on Sinc numerical methods of computation. Sinc methods provide procedures for function approximation over bounded or unbounded regions, encompassing interpolation, approximation of derivatives, approxima...

متن کامل

Numerical Approximations for a Nonlocal Evolution Equation

In this paper we study numerical approximations of the nonlocal p−Laplacian type diffusion equation, ut(t, x) = ∫ Ω J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy. First, we find that a semidiscretization in space of this problem gives rise to an ODE system whose solutions converge uniformly to the continuous one as the mesh size goes to zero. Moreover, the semidiscrete approximation shares ...

متن کامل

Numerical Methods for Parabolic Equations

(1)  ut −∆u = f in Ω× (0, T ), u = 0 on ∂Ω× (0, T ), u(·, 0) = u0 in Ω. Here u = u(x, t) is a function of spatial variable x ∈ Ω and time variable t ∈ (0, T ). The Laplace differential operator ∆ is taking with respect to the spatial variable. For the simplicity of exposition, we consider only homogenous Dirichlet boundary condition and comment on the adaptation to Neumann and other type of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1903/1/012053